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Abstract
Recent work on anonymizing online social networks
(OSNs) has looked at privacy preserving techniques for
publishing a single instance of the network. However,
OSNs evolve and a single instance is inadequate for an-
alyzing their evolution or performing longitudinal data
analysis. We study the problem of repeatedly publish-
ing OSN data as the network evolves while preserving
privacy of users. Publishing multiple instances indepen-
dently has privacy risks, since stitching the information
together may allow an adversary to identify users. We
provide methods to anonymize a dynamic network when
new nodes and edges are added to the published network.
These methods use link prediction algorithms to model
the evolution. Using this predicted graph to perform
group-based anonymization, the loss in privacy caused
by new edges can be eliminated almost entirely. We pro-
pose metrics for privacy loss, and evaluate them for pub-
lishing multiple OSN instances.

1 Introduction
OSNs are a ubiquitous feature of modern life. A key
feature of current OSNs, exemplified by Facebook, is
that a user’s detailed information is not visible without
their explicit permission. This leaves interested parties—
network researchers, sociologists, app designers—to
scrape away at the edges. Full release of snapshots of the
network would address this need. But the default settings
are private for a reason: OSNs contain sensitive personal
information of their users. Principled anonymization of
OSN data allows sharing with 3rd-parties without reveal-
ing private information. After simplistic anonymization
methods were shown to be vulnerable [3, 15] more so-
phisticated anonymizations have been proposed [20].

Prior work focused primarily on static networks: the
dataset is a single instance of the network, represented as
a graph, failing to capture the highly dynamic nature of
social network data. We would like to repeatedly release
anonymized snapshots reflecting the current state of the

network. Ensuring sufficient privacy while keeping out-
put relevant for its intended uses is more challenging in
the dynamic case. Anonymizing each version of the net-
work independently is easily shown to leak information
by comparing the different versions of the data [21]. In-
stead, we ensure that subsequent releases are consistent
with the initial release. Bad decisions made for an ini-
tial anonymization mean that subsequent releases may
lead to an undesirable amount of information (measured
in terms of probabilities) that can be extracted about the
users in the data, and may require that some information
is suppressed from the subsequent releases. Without
knowing how the network will grow, how do we choose
proper anonymizations early on so that the information
that can be extracted about individuals from later releases
is minimized?

We propose a solution based on link prediction algo-
rithms, that use the current state of the network to pre-
dict future structure. The prediction is used to choose
an anonymization which is expected to remain safe and
useful for future releases. Existing prediction methods
tend to over-predict edges, i.e., they suggest many more
edges than actually arrive. Thus, we cannot treat the pre-
dicted edges equally to observed edges, and must define
how to integrate predicted edges with anonymization al-
gorithms. We present a variety of methods to select a
subset of predicted edges to find a usable anonymiza-
tion.

Outline and Contributions. Section 2 defines the
anonymization problem for dynamic graphs, and de-
scribes four requirements of the output. Section 3
provides metrics for evaluating privacy preservation of
anonymizations based on prediction. Section 4 discusses
how different prediction models can be incorporated into
our framework, and how the results of the prediction can
be fine-tuned by adoption of conditions for anonymiza-
tion. Section 5 presents experiments over temporal data
representing social network activity from three differ-
ent sources, and empirically evaluates privacy guarantees
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and utility resulting from our anonymization methods.
Our study shows that with the correct choice of predic-
tion method and anonymization properties, it is possible
to provide useful data on dynamic social networks while
retaining sufficient privacy. We conclude in Section 6
after reviewing related work.

2 Problem Definition
Graph Model. A time-varying social network can be
represented with a graph Gt = (Vt, Et). Here Vt is
the set of vertices that represent users (or, entities) Ut

that are a part of the network at time t, and Et is the
set of all edges (interactions between users) created up
to time t. Each user is associated with a set of at-
tributes. Let G = {G1, G2, . . . , GT } be the sequence of
T graphs representing the network observed at timesteps
t = 1, 2, . . . , T respectively. We assume edges and
nodes are only added to the graph, not deleted (our model
can be extended to allow deletions, but we do not discuss
this issue in this presentation) Thus, we have Vt ⊆ Vt+1

and Et ⊆ Et+1, i.e. the graph at time t represents the
complete history of events recorded on the graph. New
edges created between time t and t + 1 form the set
Et+1\Et. Accordingly, any edge created at time t+ 1 is
one of three kinds (i) “old-old”: between nodes v, w ∈ Vt

(ii) “old-new”: between node v ∈ Vt and w ∈ Vt+1\Vt

(iii) “new-new”: between nodes v, w ∈ Vt+1\Vt. Let T
be the current timestamp so that all prior graphs Gi for
i ≤ T are observed and known. The graph continues to
evolve so that the graph GT+i for i > 0 represents the
(unknown) future state of the network.

Problem Statement. Given G as input, our objective at
any time T is to publish an anonymized version of graph
Gt as G′t. The output graph G′t should have the follow-
ing properties based on privacy parameters pn and pe:
1. entity privacy: any u ∈ Ut cannot be identified with a
node in G′t with probability > pn.
2. privacy of observed edges: for any two entities
u1, u2 ∈ Ut, where t ≤ T , without background informa-
tion it should not be possible to determine the existence
of an edge between them with probability > pe.
3. privacy of future edges: whenG′T+i is later published,
it should not be possible to identify the presence of an
edge between u1, u2 ∈ UT+i with probability > pe.
4. utility: the anonymized graphs should be usable to ob-
tain accurate answers to queries involving longitudinal
analysis (e.g., how does the interaction between users
from NJ change between two releases G′t and G′t+1).

Prior work in graph anonymization focused on pub-
lishing a single graph instance, with requirements simi-
lar to goals 1 and 2 above. When publishing information
about network evolution, new events impact what has al-
ready been published, which motivates the third goal. If
the anonymization has any value (i.e. it meets the fourth
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Figure 1: Anonymization of a single snapshot of a graph

goal of utility), then we must balance the extra utility
from publishing the new information with the potential
threat to the privacy of the previously published data.

3 Understanding Dynamic Privacy
3.1 Anonymizing a single graph
The (full) list-based scheme for anonymizing a single
graph was proposed in [4] (Section 6 identifies other
methods). It masks the mapping between nodes in the
graph V and entities U such that each v ∈ V is associ-
ated with a list of possible labels l(v) ⊂ U . The original
label of a node must appear within that node’s list. Us-
ing the full list anonymization scheme, |l(v)| ≥ k and
|l(v)| nodes are assigned the same label list. The under-
lying graph structure is published, with a label list at each
node instead of the user identifier. The lists can be gen-
erated by partitioning the nodes into groups of size k, so
that each node in the group is given the same list, which
consists of all (true) labels of nodes in the group.

If the links between nodes in a group, or between
nodes in two groups, are dense, then an observer will
conclude a high probability of certain edges. This con-
tradicts the “privacy of observed edges” requirement,
even while the privacy of entities requirement may be
met. Hence, lists are generated by dividing nodes into
g groups S1, S2 . . . Sg so that they satisfy a Safety Con-
dition. This condition states (informally) that each node
must interact with at most one node in any group and so
ensures sparsity of interactions between nodes of any two
groups. The resulting grouping guarantees the privacy of
entities with parameter pn = 1/k, and the privacy of ob-
served edges with pe = 1/k. Our focus in this paper is
on maintaining this safety condition in the presence of
arriving nodes and edges. For more context, and details
of the strength it provides, see [4].

Example 1. Figure 1(a) shows a sample snapshot of a
graph at time t with node-set Vt = {1, 2, . . . 10}. In Fig-
ure 1(b), the graph has been anonymized using the full
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list method: the nodes are partitioned into groups with
k = 2 as A = {1, 8}, B = {2, 9}, C = {3, 10}, D =
{4, 6}, and E = {5, 7}. The anonymized version satis-
fies the safety condition and shows the same graph with
each node label replaced by the name of its group.

3.2 Naı̈ve Approach to Dynamic Privacy
A natural first approach to anonymizing an evolving
network G = {G1, G2, . . . , GT } is to individually
anonymize each Gt ∈ G and publish each correspond-
ing anonymized graph G′t in turn as it is produced. For
timestep t, Gt is grouped and each node v ∈ Vt is as-
signed a list lt(v). However, since we treat each Gt sep-
arately, v’s list is potentially different at different times
t. Publishing the resulting set of lists is likely to re-
veal the identity of v. For instance, let the lists as-
signed to v at two timesteps be l1(v) = {u1, u2, u3} and
l2(v) = {u1, u4, u5}. The identity of v must be u1, vio-
lating entity privacy.

This style of attack is possible because the partition-
ing of the nodes into groups varies across different re-
leases of data, which allows linking attacks across the
releases [9, 15]. A natural fix keeps the partitioning con-
sistent over timesteps; i.e., partitioning of the vertices
present in previous steps are kept the same. New vertices
are grouped together, and the resulting grouping pub-
lished using the lists implied. This approach (the “naı̈ve
method”), clearly has the same guarantees on node-
privacy. We can modify existing algorithms to build
groupings that respect the safety conditions for new-new
edges and the new-old edges (as defined above). But if
we fix the grouping, new edges between existing nodes
that arrive at time t (i.e. the old-old edges) may violate
the safety condition, and thus break the privacy guaran-
tees. If too many edges arrive between a pair of exist-
ing groups, the (future) edge privacy is broken, as these
edges can be identified with higher probability. We can
then either publish these edges, with an associated ele-
vated probability of revelation, or suppress them, which
distorts the published graph and alters its basic proper-
ties. Our goal is to minimize the impact of these future
edges compared to the naı̈ve method, without knowing
where they will arise.

3.3 Privacy Metrics
We partition the nodes into groups to minimize loss of
edge privacy. As we must commit to a grouping before
new edges arise, subsequent edges could raise the proba-
bility of re-identifying an edge. The first metric to quan-
tify the effect of adding new edges on privacy is Edge
Identification which measures the likelihood of identify-
ing an interaction.

Definition 1. Given a pair of groups of nodes at time
t, S1 ⊂ V ′t and S2 ⊂ V ′t , their Edge Identification

EI(S1, S2) is the ratio of the number of edges between
the two groups to the maximum number of such edges:

EI(S1, S2) =
|(S1 × S2) ∩ Et|
|S1| · |S2|

Applying it to a grouping ofGt counts the pairs of groups
S1, S2 with EI(S1, S2)≥α, for 1/k2≤α≤1.

Note that EI is the probability an attacker can at-
tach to a particular pair of users in groups S1, S2: over
all the possibilities encoded by the grouping, only an
EI(S1, S2) fraction connect any pair of users with an
edge. When the grouping satisfies the safety condition,
EI(S1, S2) is at most 1/k for any pair S1, S2, since each
of the k nodes in a group may be connected to one node
in the other group. Even when the safety condition is vi-
olated, this metric may still be less than 1/k. Consider a
node v1 ∈ S1 that interacts with nodes w1, w2 ∈ S2,
and these are the only links between the two groups.
Here, the grouping does not meet the safety condition,
but EI(S1, S2) = 2/|S1||S2|, which is no more than
than 1/k. Conversely though, if the number of interac-
tions between a pair of groups of size k is more than k,
it is not possible to meet the safety condition: some node
in one group must connect to more than one node in the
other. At the same time, the EI value must be greater
than 1/k. Hence, we can think of the safety condition as
guaranteeing an EI of at most 1/k, but not vice-versa.
For full list anonymization to provide guarantees on the
privacy of edges (observed or future), any pair of groups
S1, S2, must have EI(S1, S2) ≤ pe.

The second privacy metric concerns the density of in-
teractions between a given node and other groups.

Definition 2. For a node v ∈ V ′t , the Node-Group
Density with respect to a given group S is defined as

NG(v, S) = |w ∈ S : (v, w) ∈ E|/|S|.
The overall Node-Group density of node v is defined as
the maximum node group density of v over all groups i.e.,
NG(v) = maxS(NG(v, S)) . Applying the metric to a
grouping of a graph counts the number of nodes v with
NG(v) ≥ β, for 1/k ≤ β ≤ 1.

The condition NG(v) > 1/k for any node v is a
witness for a safety condition violation. A single vio-
lation has only limited local implications for edge pri-
vacy. Measuring the node-group density this way quan-
tifies the extent to which the grouping is at risk. Even if
NG(v) = 1, the maximum possible value, privacy of the
node’s interactions is not lost. But, if v is re-identified,
then so are at least k interactions of v. Our goal is to
anonymize each Gt so that EI and NG are small as new
nodes and edges are added.

4 Dynamic Graph Anonymization
Our approach chooses a grouping of the nodes in V1 and
publishesG′1 using this grouping. That is, we publish the
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full graph structure along with a list of entities and their
attributes, at each node. This is useful for answering a
variety of queries on subpopulations within the network.
We publish subsequent graphs by extending the grouping
to the new nodes, i.e. V2\V1, V3\V2 and so on. We mea-
sure the quality of our initial choices by tracking the two
privacy metrics for the published graphs as new edges ar-
rive, i.e. E2\E1, E3\E2 etc. Our techniques to choose
the initial grouping are based on predicting which new
edges are most likely, via link prediction.

Link prediction has been heavily studied in the link
analysis and mining literature [12]. We want to pre-
dict which links are likely to arise with the new nodes
in Vt\Vt−1 and hence choose how to group these new
nodes so existing edges meet a safety condition, and fu-
ture edges are unlikely to violate it. If the model predicts
most future edges, the number of links between nodes in
any pair of groups will remain small, and privacy guar-
antees should remain intact (future edge privacy).

More precisely, at time t we use link prediction model
M to predict G̃t = (Vt, Et∪ Ẽt), which includes a set of
predicted edges, Ẽt. We use G̃t to generate the groups
for Vt\Vt−1, (nodes which have not yet been assigned
to groups). In doing so, the grouping respects the safety
condition for the combination of the previously observed
edges (Et) and additionally uses information about the
predicted edges (Ẽt) to further guide the grouping pro-
cess. For now, we assume M is given, and focus on us-
ing it for anonymization. We do not predict the arrival of
new nodes from outside Vt: these can be grouped when
they do arrive.

4.1 Grouping Conditions
The formal safety condition for a static graph in [4] is
∀v1 ∈S1, w1, w2 ∈S2, (v1, w1), (v1, w2) ∈E ⇒ w1 =w2.
This ensures sparsity of interaction between nodes in
any pair of groups, and also holds recursively if groups
are partitioned. A natural approach to extend this to G̃t

would be to apply the above condition with E replaced
by Et ∪ Ẽt. However, prediction models tend to pre-
dict a very large number of edges. So there may be no
safe grouping that satisfies the additional constraints in-
troduced by these edges. Instead, we propose a subtly
different condition.

Definition 3. A grouping of nodes in graph G̃t, satisfies
the Prediction-based Condition if
∀v1 ∈ S1, w1, w2 ∈ S2 :
(v1, w1) ∈ Et ∧ (v1, w2) ∈ (Et ∪ Ẽt)⇒ w1 = w2

i.e. there is no path of length two between two nodes in
a group with at most one predicted edge in the path.

Example 2. Figure 1(a) shows existing edges as solid
lines and predicted edges as dotted lines. The safety con-
dition (without prediction) allows nodes 1 and 10 to be in

the same group, but the prediction-based condition does
not. Under prediction grouping 4 and 10 can be in the
same group, as all 2 hop paths have two predicted edges.

The prediction-based condition is stronger than the pre-
vious safety condition: the set of groupings satisfying the
prediction condition is a subset of those satisfying safety.
Next, we propose an alternate, more liberal density based
condition which restricts the number of interactions be-
tween pairs of groups instead of at the node-level.

Definition 4. A grouping satisfies the Group Density
condition if, for every pair of groups (S1, S2), the density
of links from Et ∪ Ẽt between nodes in S1 and nodes is
S2 is less than η, with 0 ≤ η ≤ 1. This is achieved by
insisting that EI(S1, S2) is bounded by η.

A grouping that violates the prediction-based condi-
tion may still be allowed by the group density condition.
Here, EI is upper bounded by η, which can be smaller
than the 1/k of the prediction-based condition. So en-
forcing a tighter group density condition may allow more
edges to be added between a pair of groups before EI
exceeds 1/k.

A natural greedy heuristic finds a grouping which re-
spects a given condition. The algorithm takes each new
node v ∈ (Vt\Vt−1) in turn, and inserts v into the first
group of size less than k created at time t, so that the
newly formed group satisfies the grouping condition (ei-
ther the prediction-based or group density condition). If
no such group can be found, then a new group of size k
is created, initially containing v alone, which by defini-
tion satisfies either grouping condition. At the end of the
procedure, any nodes in groups of size less than k can
be merged into other groups (created at t) to form a few
groups of size k + 1. When using anonymized graphs, it
is often preferable to have entities with similar attributes
grouped together, provided the conditions are still met.
This is achieved, for instance, by considering the nodes
in an order which respects this clustering.

4.2 Modeling graph evolution
It is important to distinguish between the class of gener-
ative models, which create a synthetic instance with the
aim to match the observed properties of real networks;
and predictive models which take an existing instance of
a network and predict which links are likely to occur in
future. Here, we summarize the most relevant predictive
models (see [12] for more background). In our setting,
there is less concern over false-positives given by a link-
prediction algorithm: the privacy provided is the same
even if it turns out not to exist. Hence, we can adopt
models which predict more edges than actually arrive.

Friend-of-a-friend (FOAF). For a given node, the
FOAF model predicts edges to all nodes that are within
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two hops in Gt. Formally this model predicts edges Ẽt

as, ∀u, v, z ∈ Vt : (u, v), (v, z) ∈ Et ⇒ (u, z) ∈ Ẽt.
The model treats each such edge equally likely to appear.
Common Neighbors (CN). The CN model assumes that
when there are many common neighbors of two nodes
they are more likely to become linked. It predicts the
same links as FOAF, but attaches higher weight to those
with more common neighbors. More precisely, it gives
weights W̃t as, W̃t(u, z) = |v ∈ Vt : (u, v), (v, z) ∈
Et|. These weights are mostly small, typically 1 or 2.
Adamic-Adar (AA). The AA model [1] extends the pre-
vious models by arguing that all neighbors are not equal:
a common neighbor with a low degree is more significant
than one with a very high degree. The weight on an edge
between u and z is:

W̃t(u, z) =
∑

v∈Vt:(u,v),(v,z)∈Et

1
log(deg(v))

This predicts the same set of edges as FOAF and CN, but
applies a finer gradation of weights.
Preferential Attachment (PA). The PA model is based
on global properties of the graph. It assumes that links
are more likely to nodes with high degree than to nodes
with low degree [2]. For any two nodes u, z ∈ Vt

the model predicts an edge between them with weight
u, z ∈ Vt, W̃t(u, z) = deg(u) · deg(z). where deg(u) is
the degree of node u. PA implicitly predicts all possible
edges, so thresholding is needed to make this meaning-
ful.

Exactly which model is most suitable depends also
on features of the social network itself. For instance,
Facebook suggests friends drawn from the user’s local
structure, which tends to lead to a denser local graph
(i.e. adding FOAF links). By contrast, networks such
as Flickr and Twitter allow directed links that don’t have
to be reciprocated, and so promote popular users (i.e. a
more PA-style growth model).

Several other features of nodes affect link creation,
including, homophily (similarity of node attributes) and
temporal state of a node to capture whether it is actively
adding links or has reached a stable phase. These insights
can be incorporated into the adopted model to adjust
weights on predicted edges accordingly. Our anonymiza-
tion approach is not strongly model dependent, so if
new models are proposed to modify weights, they can
naturally be incorporated into our framework. Clearly
though, the resulting privacy and utility will depend on
how well the predictions match reality. In our experi-
mental evaluation we compare the relatively simple PA,
FOAF, CN and AA models, and show that they are suffi-
cient to show clear gains over no prediction.

4.3 Choosing from Predicted Links
The unfiltered FOAF model predicts a number of edges
close to the sum of squares of the degrees, while PA

Facebook FriendFeed Flickr
Nodes at t=0 54K 99K 1.5M
Edges at t=0 887K 1.4M 19.5M
Nodes added 8.8K 100K 717K
Edge added 658K 2.48M 13.6M

Table 1: Summary of datasets

t Timestamp Nodes added Edges added
0 Sept 14 ’08 99K 1.4M
1 Jan 6 ’09 33K 714K
2 Feb 26 ’09 32K 1M
3 Mar 2 ’09 2K 33K
4 Mar 27 ’09 12K 257K
5 Apr 26 ’09 20K 435K

Table 2: FriendFeed data at 6 timestamps

effectively predicts an edge between all pairs of nodes.
Finding a grouping that meets a condition (which en-
forces local sparsity) can be impossible on a dense graph,
so it is imperative to select a subset of the predicted
edges. We propose several alternatives:

Global Threshold (GT): pick the top τ most heavily
weighted edges. This might predict many more edges
incident on some nodes than others. In the PA model,
almost all predicted edges will be incident on the highest
degree nodes.

Local Threshold (LT): pick the τ ′ edges at each node
which have the highest weight. This implicitly assumes a
uniform level of activity across nodes, whereas in reality
activity varies over the network.

Adaptive-Local Threshold (ALT): pick the top
f(deg(v)) edges where f(deg(v)) is a function of the
the current degree deg(v) of node v. f can be e.g. lin-
ear or logarithmic in deg(v); it can also be set based on
observed historic behavior of node growth.

5 Experimental Analysis
We present results on the effectiveness of anonymization
for data from Facebook, Flickr, and social network ag-
gregator FriendFeed (summarized in Table 1). The data
from the three networks was collected over 4-12 months.
The first data collection is referred to as t = 0 and the last
observed graph as t = T . Figure 2 shows log-log scale
scatter plots for each dataset with node degrees at t = 0
on the x axis and at t = T on the y axis, so a node lying
on the x = y line created no new links during this time
period. Growth in Facebook is typically at most one or-
der in magnitude, while in Flickr, some degrees increase
by three orders of magnitude.

Facebook. The Facebook dataset is from the New Or-
leans region, collected between January 2008 and Jan-
uary 2009 [17]. Of the new links at t = T , 95% are
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(a) Facebook (b) FriendFeed (c) Flickr

Figure 2: Log-log plots of node degree at t=0 versus degree at t=T for the three datasets

Facebook FFeed Flickr
New edges at time T 629K 803K 3.5M
between existing (old) nodes
# edges predicted by FOAF 42M 540M 900M
Sensitivity of FOAF predictions 53% 60% 60%
Sensitivity of PA predictions 4% 6.4% 0.4%
% of true positives chosen by ALT 98% 46% 8%
Naı̈ve grouping for k=10 X × X
Fraction of celebrity nodes 0 0.01% 0.4%

Table 3: Summary of prediction and grouping

between nodes in V0.
FriendFeed. The FriendFeed (FFeed) dataset has 99K
nodes and 1.4M edges in September 2008, and within
7 months the network doubled in size [7]. The graph
was collected at 6 timestamps (Table 2). The 12 highest
degree nodes each have over 5000 links, and represent
“celebrities”.
Flickr. The Flickr datasets [14] were collected in
November-December 2006, and February-May 2007.
Flickr edges are directed with 62% of the links being re-
ciprocated. 6284 nodes with degree over 1000 are con-
sidered celebrities. Of the remaining graph, 98% of the
new links at t = T are between existing nodes.

5.1 Anonymization
Link Prediction Models. We evaluate the prediction
models on their sensitivity, which measures the frac-
tion of new edges that are predicted by the model. Ta-
ble 3 shows the sensitivity of prediction using the FOAF
model as a percentage. These values strengthen our hy-
pothesis that grouping with some knowledge of the an-
ticipated edges helps to preserve privacy. Table 3 also
shows the sensitivity of PA using ALT to choose a subset
of edges. PA’s sensitivity is sufficiently low that we focus
on the local models for the rest of this analysis.
Choosing from Predicted Links. Table 3 shows that the
number of edges predicted by FOAF is much larger than
the new edges added by time T . If all predicted edges

are included in the output of the model, the graph is no
longer sparse enough to find a grouping satisfying the
grouping conditions. We use thresholding to choose a
subset of the predicted links based on their weights. A
predicted edge is considered a “true positive” if it is ob-
served in the graph at time T . We compare the threshold
methods by computing the fraction of true positives cho-
sen by each method for a fixed number of chosen edges,
τ . We aim to choose a large τ value, provided that a
grouping can be computed that respects the prediction-
based condition.

For Facebook data with AA, we fix τ = 10M, to al-
low sufficient over-prediction while still being able to
group the graph. GT chooses 79% of the true posi-
tives. For LT, since there are 54K nodes, we pick the
top τ ′ = 10M/54K= 185 predicted edges by weight,
for each node. This chooses 81% of the true positives.
The threshold function for the ALT is chosen by first di-
viding the nodes into b bins (b = 10), based on their
degree at t = 0. We set a local threshold by taking the
distribution of final degrees of all nodes in each bin, and
set the threshold f(deg(v)) to be the 95th percentile of
these. The parameter b and the percentile chosen may
be tuned for each dataset based on node degree distribu-
tion. Of the thresholding methods, ALT best captures the
true positives and picks 98% of them. For Facebook, all
three threshold schemes work reasonably well. However,
Figure 2 shows the number of edges added by nodes is
not constant. Fixing one threshold for all nodes does not
work as well as ALT. Since ALT outperforms the other
methods for all datasets, we adopt this as the method of
choice for all subsequent analysis. We show the percent-
age of true positives chosen using ALT in Table 3.

Partitioning Nodes into Groups. Depending on the
sparsity Gt, there may be no grouping for a given k. For
instance, if two nodes with high degrees are connected,
then predicting all FOAF links means that no pair of their
neighbors can be placed in the same group. This was the
case in FriendFeed, where “celebrities” rendered it un-
groupable for k = 10 even with the naı̈ve grouping. Ta-
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Figure 3: Evaluating EI and NG for different datasets

ble 3 shows the groupability of all datasets. In the rest
of the section, we use k = 10 unless specified. For
grouping FriendFeed, we ignore the 12 nodes with de-
gree above 5000 to make the graph groupable with the
naiv̈e grouping. The graph is ungroupable using FOAF,
but by modifying ALT to predict no links for the top 209
high degree nodes (degree > 1000), the graph becomes
groupable with the prediction-based grouping condition.
Celebrity nodes in Flickr are handled similarly.

5.2 Evaluating Privacy

We evaluate the privacy metrics EI and NG (Sec-
tion 3.3). We anonymize the graph at t = 0 using no pre-
diction, G′t, and G̃′t using FOAF, CN or AA models. We
compute the EI and NG counts for each anonymized
graph at t = T . For each dataset, we compare the dif-
ference in EI (and NG) values for G′t, and G̃′t. In our
experiments, out of the pairs of groups that interact, over
85% have at most one interaction between them, that is,
α = 1/k2 for such pairs. This case is interesting as the
EI values for α = 1/k2 are larger when using predic-
tion, signifying that new edges are added between pairs
of nodes that did not already interact. For α ≥ 2/k2 the
EI values are smaller for prediction-based grouping than
the naı̈ve grouping. This reduction signifies that fewer
groups have more than 2 edges between them. Both cases
are desirable for maintaining sparsity in interactions be-

tween groups, which translates to improved privacy for a
grouping-based anonymization.

Edge Identification. Figure 3 shows the percentage
change in EI when using prediction as compared with
no prediction for different settings. Figures 3(a), 3(b) and
3(c) show the improvement in EI for Facebook, Friend-
Feed and Flickr respectively. Figure 3(a) shows an im-
provement of about 90% in EI for publishing G̃′t using
FOAF over publishing G̃′t without prediction. The gain
in using the fewer predicted edges from AA or CN is
still significant: over 50% for α = 0.04 and above. High
values of α correspond to more edges between a pair of
groups. The larger gain for higher values of α is ex-
pected, since use of predicted edges prevents groupings
that have many edges between them. Figure 3(b) shows a
similar trend with an average improvement of 93% over
different α for the FriendFeed dataset anonymized us-
ing FOAF. For this dataset, the CN model (average gain
90%) seems to better explain the formation of the new
links as compared with AA (average gain 43%), due to
the greater number of true positives chosen. We observe
that AA chooses 46% of correctly predicted links, while
CN chooses about 70% of the true positives. The FOAF
model for Flickr shows about a 36% improvement over
the naı̈ve grouping as seen in Figure 3(c). The prediction
models do not exhibit large gains for the Flickr dataset.
The size of this dataset is much larger and the average
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Figure 4: Evaluating Density Condition and Utility for different datasets

degree of nodes (ignoring celebrities) is just 5. For such
sparse graphs, the absolute EI values are low, leaving
less room for improvement.

Group Size. Next we study the privacy parameter k,
and its effect on EI . Figure 3(d) shows the results on
Facebook dataset for k = 5, 10 and 15 using FOAF. For
k = 5, there are more groups than with larger values of
k. Hence, the likelihood of a new edge being added to a
given pair of groups is smaller resulting in a smaller EI ,
and a relatively small benefit in using prediction. Con-
versely, for large k, the improvement in EI from pre-
dicting links and grouping accordingly is greater.

Multiple Releases. Figure 3(e) shows the absolute val-
ues of EI for multiple releases of the FriendFeed net-
work. For a given α, the absolute EI values of naı̈ve
approach are significantly higher than with using predic-
tion. The EI values increase before Feb, when many
links are added to the graph. Before that, no pairs of
groups have 4 or more links with prediction-based group-
ing. With fewer links added between existing nodes after
Feb, the EI values change little.

Node-Group Density. The prediction based anonymiza-
tion shows significant improvement over the naı̈ve
anonymization for the Node-Group Density metric as
well. Figure 3(f) shows the improvement in theNGmet-
ric for graph G̃′t over G′t. We present results for β = 0.2
and k = 10, which is equivalent to computing the num-
ber of pairs of groups where the safety condition is vio-
lated. That is, there exists at least one node in the groups
that connects with two or more nodes in any other group.
As with EI , the trend is that FOAF performs best, then
CN followed by AA.

Group Density Condition. This condition was proposed
to allow grouping a graph that is “ungroupable” using
stricter safety and prediction-based conditions. Here, we
consider all links including those that involve the high
degree nodes. Figure 4(a) shows the improvement in EI
obtained using FOAF and AA with group density con-

dition on FriendFeed. This dataset is groupable using
the group density condition, but not the prediction-based
condition. Prediction results in a significant improve-
ment in EI for various η, or density of links between
groups. The results in Figure 4(a) are for a grouping that
allows at most η = 4/k2. The small improvement in EI
for large αwith AA is due to the small number of pairs of
groups (S1, S2) that have EI(S1, S2) = α. For the plot
shown, the difference in the number of pairs of groups
between G̃′t and G′t for α ≤ 0.09 is in thousands, while
that for α > 0.09 is less than 5.

Figure 4(b) compares absoluteEI values (in log scale)
under the safety condition and the more relaxed group
density condition for anonymization without prediction.
We use Facebook, as it is groupable for both conditions
so we can directly compare the privacy provided. For a
given α ≥ 0.02, the number of groups with EI ≥ α
is much larger for the group density condition, leading
to weaker privacy. With the safety condition there are
no groups with more than 9 edges between them, which
is not the case with the group density condition. Thus,
the group density condition allows us to group graphs
that are ungroupable under the safety condition, but with
lower privacy bounds.

Utility. We analyze the accuracy of results of query-
ing multiple releases of an anonymized graph. We com-
pute the relative error in the query result with respect to
the true result obtained on querying the unanonymized
graph. Figure 4(c) shows the relative error for the query:
“How many Facebook users aged 15-20 interact with
users aged 20-30 at the start and end of the measurement
period?” Our results show that there is negligible loss
of utility when using AA compared to naı̈ve grouping.
The result is slightly better on graphs grouped using the
AA and CN compared to FOAF. Similar trends were ob-
served for a workload of 20 other queries.

8



6 Related Work

Graph Anonymization. There has been much research
on data anonymization since k-anonymity on tabular data
[16] and efforts in statistics [6, 8]. There are two styles
of approach to the graph anonymization problem [20].
Graph modification adds and removes links so that the
same structure appears multiple times in the graph. This
is intended to defeat attacks which try to link to known
structure in the graph[3, 15]. The duplicated structure
can be local, such as degree [13] or immediate neighbor-
hood [19], or global, such as full reachability from each
node [21]. However, a graph may need a lot of modifica-
tion before it meets these requirements.

Clustering-based methods aggregate edge or node in-
formation, so that there are many possible mappings
from the clustering back to graphs, of which the original
graph is promised to be one. List anonymization (Sec-
tion 3) falls in this space; other variations are found in
the work of Campan et al. [5] and Zheleva et al. [18].
Zou et al. [21] discuss the case of dynamic social net-
work data (as an extension of their graph modification
method), arguing that it can handle multiple releases by
simply adding more dummy edges to mirror the newly
arriving edges in k places around the graph. Use of pre-
diction to better prepare for those edges that are likely to
arrive is not discussed.

Evolution of Social Networks. An early large scale
study on the evolution of two social networks Flickr and
Yahoo! 360 [10] proposed a generative model based on
preferential attachment biased by the activity state of the
node. Empirical studies on Flickr [14], Facebook [17]
and FriendFeed [7] analyze the growth of these networks
over time. In [14], the authors showed that 80% of new
links in Flickr are between nodes that are two-hops away.

7 Concluding Remarks

Our methods for anonymization of social network data
permit multiple releases of data. The published data
meets privacy requirements while remaining useful for
further analysis. Link prediction gives significant ben-
efits in maintaining the privacy in the data. It remains
to extend this approach to other techniques for graph
anonymization, such as other clustering and modifica-
tion based methods. The clustering methods we stud-
ied give anonymity guarantees against adversaries with a
limited background knowledge. However, it is also de-
sirable to defend against more powerful adversaries, such
as those that control large numbers of entities and manip-
ulate their link structure.

Acknowledgements. We thank the authors of [14], [17]
and [7] for graciously providing us with their data.

References
[1] L. Adamic and E. Adar. Friends and neighbors on the

web. Social Networks, 25:211–230, 2001.
[2] R. Albert and A.-L. Barabási. Statistical mechanics of

complex networks. Rev. Mod. Phys., 74:47–97, 2002.
[3] L. Backstrom, C. Dwork, and J. Kleinberg. Wherefore

are thou R3579X? Anonymized social networks, hidden
patterns and structural steganography. In WWW, 2007.

[4] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivas-
tava. Class based graph anonymization for social network
data. In VLDB, 2009.

[5] A. Campan and T. M. Truta. A clustering approach for
data and structural anonymity in social networks. In
PinKDD, 2008.

[6] G. Cormode and D. Srivastava. Anonymized data: gener-
ation, models, usage. In ACM SIGMOD, 2009.

[7] S. Garg, T. Gupta, N. Carlsson, and A. Mahanti. Evolu-
tion of an online social aggregation network: An empiri-
cal study. In IMC, 2009.

[8] J. Gehrke and A. Macahanavajjhala. Privacy in data pub-
lishing. In IEEE Symposium on Security and Privacy,
2009.

[9] M. Hay, D. Jensen, G. Miklau, D. Towsley, and P. Weis.
Resisting structural re-identification in anonymized social
networks. In VLDB, 2008.

[10] R. Kumar, J. Novak, and A. Tomkins. Structure and evo-
lution of online social networks. In ACM SIGKDD, 2006.

[11] J. Leskovec, L. Backstrom, R. Kumar, and A. Tomkins.
Microscopic evolution of social networks. In ACM
SIGKDD, 2008.

[12] D. Liben-Nowell and J. Kleinberg. The link prediction
problem for social networks. In CIKM, 2003.

[13] K. Liu and E. Terzi. Towards identity anonymization on
graphs. In ACM SIGMOD, 2008.

[14] A. Mislove, H. S. Koppula, K. P. Gummadi, P. Druschel,
and B. Bhattacharjee. Growth of the flickr social network.
In WOSN, 2008.

[15] A. Narayanan and V. Shmatikov. De-anonymizing social
networks. In IEEE Symposium on Security and Privacy,
2009.

[16] P. Samarati and L. Sweeney. Protecting privacy when
disclosing information: k-anonymity and its enforcement
through generalization and suppression. SRI-CSL-98-04,
SRI Intl., 1998.

[17] B. Viswanath, A. Mislove, M. Cha, and K. P. Gummadi.
On the evolution of user interaction in facebook. In
WOSN, 2009.

[18] E. Zheleva and L. Getoor. Preserving the privacy of sen-
sitive relationships in graph data. In PinKDD, 2007.

[19] B. Zhou and J. Pei. Preserving privacy in social networks
against neighborhood attacks. In IEEE ICDE, 2008.

[20] B. Zhou, J. Pei, and W. Luk. A brief survey on
anonymization techniques for privacy preserving publish-
ing of social network data. SIGKDD Explorations, 2008.

[21] L. Zou, L. Chen, and M. T. Ozsu. K-automorphism: A
general framework for privacy preserving network publi-
cation. In VLDB, 2009.

9


